Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 223: 23-30, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561076

RESUMO

Five host-defense peptides (figainin 2PL, hylin PL, raniseptin PL, plasticin PL, and peptide YL) were isolated from norepinephrine-stimulated skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae) collected in Trinidad. Raniseptin PL (GVFDTVKKIGKAVGKFALGVAKNYLNS.NH2) and figainin 2PL (FLGTVLKLGKAIAKTVVPMLTNAMQPKQ. NH2) showed potent and rapid bactericidal activity against a range of clinically relevant Gram-positive and Gram-negative ESKAPE + pathogens and Clostridioides difficile. The peptides also showed potent cytotoxic activity (LC50 values < 30 µM) against A549, MDA-MB-231 and HT29 human tumor-derived cell lines but appreciably lower hemolytic activity against mouse erythrocytes (LC50 = 262 ± 14 µM for raniseptin PL and 157 ± 16 µM for figainin 2PL). Hylin PL (FLGLIPALAGAIGNLIK.NH2) showed relatively weak activity against microorganisms but was more hemolytic. The glycine-leucine-rich peptide with structural similarity to the plasticins (GLLSTVGGLVGGLLNNLGL.NH2) and the non-cytotoxic peptide YL (YVPGVIESLL.NH2) lacked antimicrobial and cytotoxic activities. Hylin PL, raniseptinPL and peptide YL stimulated the rate of release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥100 nM. Peptide YL was the most effective (2.3-fold increase compared with basal rate at 1 µM concentration) and may represent a template for the design of a new class of incretin-based anti-diabetic drugs.

2.
Methods Mol Biol ; 2758: 291-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549020

RESUMO

Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal ß-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Camundongos , Humanos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Anuros/metabolismo , Pele/metabolismo
3.
Peptides ; 175: 171180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401671

RESUMO

Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal ß-cells and isolated mouse islets, (b) display ß-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1ß. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/metabolismo , Anuros/metabolismo , Glucose , Citocinas
4.
Gen Comp Endocrinol ; 350: 114470, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346454

RESUMO

Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.


Assuntos
Squalus acanthias , Squalus , Animais , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacologia , Glucose/metabolismo , Fígado/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia
5.
Peptides ; 173: 171149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184193

RESUMO

Options for the treatment of type 2 diabetes mellitus (T2DM) and obesity have recently been expanded by the results of several large clinical trials with incretin-based peptide therapies. Most of these studies have been conducted with the glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, which is available as a once weekly subcutaneous injection and once daily tablet, and the once weekly injected dual agonist tirzepatide, which interacts with receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP). In individuals with T2DM these therapies have achieved reductions of glycated haemoglobin (HbA1c) by > 2% and lowered body weight by > 10%. In some studies, these agents tested in non-diabetic, obese individuals at much higher doses have lowered body weight by > 15%. Emerging evidence suggests these agents can also offer cardio-protective and potentially reno-protective effects. Other incretin-based peptide therapies in early clinical development, notably a triple GLP-1/GIP/glucagon receptor agonist (retatrutide) and a combination of semaglutide with the amylin analogue cagrilintide (CagriSema), have shown strong efficacy. Although incretin therapies can incur adverse gastrointestinal effects these are for most patients mild-to-moderate and transient but result in cessation of treatment in some cases. Thus, the efficacy of new incretin-based peptide therapies is enhancing the opportunity to control body weight and blood glucose and improve the treatment of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Incretinas/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Obesidade , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peso Corporal , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico
6.
Antibiotics (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760701

RESUMO

Envenomation by the Trinidad thick-tailed scorpion Tityus trinitatis may result in fatal myocarditis and there is a high incidence of acute pancreatitis among survivors. Peptidomic analysis (reversed-phase HPLC followed by MALDI-TOF mass spectrometry and automated Edman degradation) of T. trinitatis venom led to the isolation and characterization of three peptides with antimicrobial activity. Their primary structures were established asTtAP-1 (FLGSLFSIGSKLLPGVFKLFSRKKQ.NH2), TtAP-2 (IFGMIPGLIGGLISAFK.NH2) and TtAP-3 (FFSLIPSLIGGLVSAIK.NH2). In addition, potassium channel and sodium channel toxins, present in the venom in high abundance, were identified by CID-MS/MS sequence analysis. TtAP-1 was the most potent against a range of clinically relevant Gram-positive and Gram-negative aerobes and against the anaerobe Clostridioides difficile (MIC = 3.1-12.5 µg/mL). At a concentration of 1× MIC, TtAP-1 produced rapid cell death (<15 min against Acinetobacter baumannii and Staphylococcus aureus). The therapeutic potential of TtAP-1 as an anti-infective agent is limited by its high hemolytic activity (LC50 = 18 µg/mL against mouse erythrocytes) but the peptide constitutes a template for the design of analogs that maintain the high bactericidal activity against ESKAPE pathogens but are less toxic to human cells. It is suggested that the antimicrobial peptides in the scorpion venom facilitate the action of the neurotoxins by increasing the membrane permeability of cells from either prey or predator.

7.
Amino Acids ; 55(10): 1349-1359, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548712

RESUMO

The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelmatobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied extensively, but information is limited  regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAKKLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secretions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% trifluoroethanol-water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimicrobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP was inactive against both the tumor-derived cells and bacteria.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Células Endoteliais/metabolismo , Proteínas de Anfíbios/química , Anuros/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/metabolismo , Pele/metabolismo , Testes de Sensibilidade Microbiana
8.
Antibiotics (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508198

RESUMO

Frogs from the extensive amphibian family Hylidae are a rich source of peptides with therapeutic potential. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae) collected in Trinidad led to the isolation and structural characterization of five host-defense peptides with limited structural similarity to figainin 2 and picturin peptides from other frog species belonging to the genus Boana. In addition, the skin secretions contained high concentrations of tryptophyllin-BN (WRPFPFL) in both C-terminally α-amidated and non-amidated forms. Figainin 2BN (FLGVALKLGKVLG KALLPLASSLLHSQ) and picturin 1BN (GIFKDTLKKVVAAVLTTVADNIHPK) adopt α-helical conformations in trifluroethanol-water mixtures and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). The CD data also indicate contributions from turn structures. Both peptides and picturin 2BN (GLMDMLKKVGKVALT VAKSALLP) inhibited the growth of clinically relevant Gram-negative and Gram-positive bacteria with MIC values in the range 7.8-62.5 µM. Figainin 2BN was potently cytotoxic to A549, MDA-MB-231 and HT-29 human tumor-derived cells (LC50 = 7-14 µM) but displayed comparable potency against non-neoplastic HUVEC cells (LC50 = 15 µM) indicative of lack of selectivity for cancer cells.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36868141

RESUMO

Skin secretions of certain frog species represent a source of host-defense peptides (HDPs) with therapeutic potential and their primary structures provide insight into taxonomic and phylogenetic relationships. Peptidomic analysis was used to characterize the HDPs in norepinephrine-stimulated skin secretions from the Amazon River frog Lithobates palmipes (Ranidae) collected in Trinidad. A total of ten peptides were purified and identified on the basis of amino acid similarity as belonging to the ranatuerin-2 family (ranatuerin-2PMa, -2PMb, -2PMc, and-2PMd), the brevinin-1 family (brevinin-1PMa, -1PMb, -1PMc and des(8-14)brevinin-1PMa) and the temporin family (temporin-PMa in C-terminally amidated and non-amidated forms). Deletion of the sequence VAAKVLP from brevinin-1PMa (FLPLIAGVAAKVLPKIFCAISKKC) in des[(8-14)brevinin-1PMa resulted in a 10-fold decrease in potency against Staphylococcus aureus (MIC = 31 µM compared with 3 µM) and a > 50-fold decrease in hemolytic activity but potency against Echerichia coli was maintained (MIC = 62.5 µM compared with 50 µM). Temporin-PMa (FLPFLGKLLSGIF.NH2) inhibited growth of S. aureus (MIC = 16 µM) but the non-amidated form of the peptide lacked antimicrobial activity. Cladistic analysis based upon the primary structures of ranaturerin-2 peptides supports the division of New World frogs of the family Ranidae into the genera Lithobates and Rana. A sister-group relationship between L. palmipes and Warszewitsch's frog Lithobates warszewitschii is indicated within a clade that includes the Tarahumara frog Lithobates tarahumarae. The study has provided further evidence that peptidomic analysis of HDPs in frog skin secretions is a valuable approach to elucidation of the evolutionary history of species within a particular genus.


Assuntos
Ranidae , Staphylococcus aureus , Animais , Sequência de Aminoácidos , Filogenia , Staphylococcus aureus/metabolismo , Ranidae/metabolismo , Proteínas de Anfíbios/metabolismo , Pele/metabolismo
10.
Peptides ; 161: 170939, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608818

RESUMO

Long-acting analogues of the naturally occurring incretin, glucagon-like peptide-1 (GLP-1) and those modified to interact also with receptors for glucose-dependent insulinotropic polypeptide (GIP) have shown high glucose-lowering and weight-lowering efficacy when administered by once-weekly subcutaneous injection. These analogues herald an exciting new era in peptide-based therapy for type 2 diabetes (T2D) and obesity. Of note is the GLP-1R agonist semaglutide, available in oral and injectable formulations and in clinical trials combined with the long-acting amylin analogue, cagrilintide. Particularly high efficacy in both glucose- and weight lowering capacities has also been observed with the GLP-1R/GIP-R unimolecular dual agonist, tirzepatide. In addition, a number of long-acting unimolecular GLP-1R/GCGR dual agonist peptides and GLP-1R/GCGR/GIPR triagonist peptides have entered clinical trials. Other pharmacological approaches to chronic weight management include the human monoclonal antibody, bimagrumab which blocks activin type II receptors and is associated with growth of skeletal muscle, an antibody blocking activation of GIPR to which are conjugated GLP-1R peptide agonists (AMG-133), and the melanocortin-4 receptor agonist, setmelanotide for use in certain inherited obesity conditions. The high global demand for the GLP-1R agonists liraglutide and semaglutide as anti-obesity agents has led to shortage so that their use in T2D therapy is currently being prioritized.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Obesidade/tratamento farmacológico , Obesidade/complicações , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Incretinas/uso terapêutico , Polipeptídeo Inibidor Gástrico/farmacologia , Glucose , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
11.
J Pept Sci ; 29(4): e3463, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36426386

RESUMO

The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2 ), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4 →Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 µM) compared with the naturally occurring peptide. The substitution Ala18 →Lys and the double substitution Asp4 →Lys and Ala18 →Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12-20 µM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 µM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 µM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+ ] in BRIN-BD11 cells when incubated at a concentration of 1 µM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.


Assuntos
Anti-Infecciosos , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/química , Lisina , Antibacterianos/química , Diabetes Mellitus Tipo 2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Endoteliais/metabolismo , Proteínas de Anfíbios/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Neoplasias Pulmonares/metabolismo , Insulina/metabolismo , Antineoplásicos/farmacologia , Anuros/metabolismo , Pele/metabolismo
13.
Peptides ; 157: 170877, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108978

RESUMO

Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Glucose , Guanidinas , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Metformina/uso terapêutico , Receptores de Glucagon/genética
14.
Peptides ; 153: 170812, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577259
15.
Peptides ; 147: 170706, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861327

RESUMO

The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal ß-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with ß-cell proliferation, protection of ß-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in ß-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in ß-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Peixes/farmacologia , Incretinas/agonistas , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/farmacologia , Diabetes Mellitus Tipo 2/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Resistência à Insulina , Obesidade/complicações , Proglucagon/química
17.
Front Endocrinol (Lausanne) ; 12: 683089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177808

RESUMO

Enteroglucagon refers to the predominant peptide with glucagon-like immunoreactivity (GLI) that is released by the intestine into the circulation in response to nutrients. Development of a radioimmunoassay for glucagon revealed issues that were not apparent in applications of the insulin radioimmunoassay. The fact that some antisera raised against glucagon recognized glucagon-related peptides in extracts of both pancreas and gut whereas others recognized only components in the pancreas remained a mystery until it was realized that the "gut GLI cross-reactive" antisera were directed against an epitope in the N-terminal to central region of glucagon whereas the "pancreatic glucagon specific" antisera were directed against an epitope in the C-terminal region. Unlike the cross-reactive antisera, the glucagon specific antisera did not recognize components in which glucagon was extended from its C-terminus by additional amino acids. Initial attempts to purify enteroglucagon from porcine ileum led to the erroneous conclusion that enteroglucagon comprised 100 amino acids with an apparent molecular mass of 12,000 Da and was consequently given the name glicentin. Subsequent work established that the peptide constituted residues (1-69) of proglucagon (Mr 8128). In the 40 years since the structural characterization of glicentin, attempts to establish an unambiguous physiological function for enteroglucagon have not been successful. Unlike the oxyntomodulin domain at the C-terminus of enteroglucagon, the primary structure of the N-terminal domain (glicentin-related pancreatic peptide) has been poorly conserved among mammals. Consequently, most investigations of the bioactivity of porcine glicentin may have been carried out in inappropriate animal models. Enteroglucagon may simply represent an inactive peptide that ensures that the intestine does not release equimolar amounts of a hyperglycemic agent (glucagon) and a hypoglycemic agent (GLP-1) after ingestion of nutrients.


Assuntos
Proglucagon , Animais , História do Século XX , Humanos , Proglucagon/química , Proglucagon/genética , Proglucagon/história , Radioimunoensaio
18.
J Pept Sci ; 27(8): e3328, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33843129

RESUMO

The abilities of the long-acting, dual-agonist anti-diabetic peptides [D-Ala2 ]palmitoyl-lamprey GLP-1 and [D-Ser2 ]palmitoyl-paddlefish glucagon to induce α-cell to ß-cell transdifferentiation were investigated in GluCreERT2 ;ROSA26-eYFP mice. These animals have been genetically engineered so that yellow fluorescent protein is specifically expressed in glucagon-producing α-cells, thereby allowing cell lineage tracing. Insulin deficiency was produced by treatment of the mice with multiple low doses of streptozotocin. Administration of the peptides (twice daily intraperitoneal injections of 25 nmol/kg body weight over 10 days) to streptozotocin-treated mice produced significant (P < 0.05) increases in pancreatic insulin content and plasma insulin concentrations compared with control mice. Immunohistochemical studies demonstrated a significant (P < 0.05) increase in the % of cells staining for both insulin and fluorescent protein in islets located in the head region of the pancreas (from 10.0 ± 1.3% of total cells in untreated mice to 20.0 ± 3.85% in mice treated with D-Ala2 ]palmitoyl-lamprey GLP-1 and to 17.3 ± 1.1% in mice treated with [D-Ser2 ]palmitoyl-paddlefish glucagon). Corresponding effects upon islets in the tail region were not significant. The data indicate an improvement in ß-cell mass and positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. The study provides further evidence that proglucagon-derived peptides from phylogenetical ancient fish show therapeutic potential for treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucagon/metabolismo , Insulina/metabolismo , Animais , Transdiferenciação Celular , Diabetes Mellitus Experimental/induzido quimicamente , Feminino , Insulina/deficiência , Camundongos , Camundongos Transgênicos , Estreptozocina
19.
Peptides ; 136: 170472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338546

RESUMO

The antidiabetic actions of [A14K]PGLa-AM1, an analog of peptide glycine-leucine-amide-AM1 isolated from skin secretions of the octoploid frog Xenopus amieti, were investigated in genetically diabetic-obese db/db mice. Twice daily administration of [A14K]PGLa-AM1 (75 nmol/kg body weight) for 28 days significantly (P < 0.05) decreased circulating blood glucose and HbA1c and increased plasma insulin concentrations leading to improvements in glucose tolerance. The elevated levels of triglycerides, LDL and cholesterol associated with the db/db phenotype were significantly reduced by peptide administration. Elevated plasma alanine transaminase, aspartic acid transaminase, and alkaline phosphatase activities and creatinine concentrations were also significantly decreased. Peptide treatment increased pancreatic insulin content and improved the responses of isolated islets to established insulin secretagogues. No significant changes in islet ß-cell and α-cell areas were observed in [A14K]PGLa-AM1 treated mice but the loss of large and medium-size islets was prevented. Peptide administration resulted in a significant (P < 0.01) increase in islet expression of the gene encoding Pdx-1, a major transcription factor in islet cells determining ß-cell survival and function, resulting in increased expression of genes involved with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c) together with the genes encoding the incretin receptors Glp1r and Gipr. In addition, the elevated expression of insulin signalling genes (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in skeletal muscle associated with the db/db phenotype was downregulated by peptide treatment These data suggest that the anti-diabetic properties of [A14K]PGLa-AM1 are mediated by molecular changes that enhance both the secretion and action of insulin.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina/sangue , Obesidade/tratamento farmacológico , Proteínas de Anfíbios/síntese química , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina/genética , Camundongos , Obesidade/sangue , Obesidade/patologia
20.
Biochimie ; 181: 162-168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359559

RESUMO

Skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae) contain the proline-arginine-rich peptide, rhinophrynin-27 (RP-27; ELRLPEIARPVPEVLPARLPLPALPRN) with insulinotropic and immunomodulatory properties, together with a higher concentration of the biologically inactive form, rhinophrynin-33 (RP-33) that constitutes RP-27 extended from its C-terminus by the hexapeptide KMAKNQ. Determination of the conformation of RP-33 by NMR demonstrates that in both water and in a solvent that promotes protein folding (50% trifluoroethanol-water), the majority of the proline residues are found in a polyproline type II helical region. The peptide adopts a horseshoe (U-shaped) conformation with pronounced bends in the molecule of around 100°-120° at Glu13 and Arg18. The hexapeptide extension adopts a α-helical conformation. When the hexapeptide is excised to generate RP-27, the molecule adopts an L-shaped conformation with a single bend at Glu13. A search of protein sequence databases indicated the P-X-P-XXX-P-XXX-P-X-P motif found in RP-27 and RP-33 occurs in a number of proteins although its functional implications are unclear. The data suggest that RP-33 represents a biosynthetic precursor of RP-27 that is activated by a protease cleaving at a single lysine residue of the type previously identified in Xenopus laevis skin secretions.


Assuntos
Proteínas de Anfíbios , Peptídeos Catiônicos Antimicrobianos , Pele , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros , Estrutura Secundária de Proteína , Pele/química , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...